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1- Introduction to Qubits



Introduction

1 A hermitian space is a finite dimensional vector space V over
C equipped with a hermitian form

〈·, ·〉 : V 2 −→ C,

that is
sesquilinear:

〈λx + µx ′, y〉 = λ̄〈x , y〉+ µ̄〈x ′, y〉
〈x , λy + µy ′〉 = λ〈x , y〉+ µ〈x , y ′〉

symmetric: 〈x , y〉 = 〈y , x〉
positive: 〈x , x〉 > 0 if x 6= 0.

2 We define also for x ∈ V the norm ||x || =
√
〈x , x〉.

3 Let V , W 1 be hermitian spaces, f : V →W is a unitary
morphism if it is C-linear and

〈f (x), f (y)〉 = 〈x , y〉 ∀x , y ∈ V .
1actually we will consider always V = W in this presentation.

A theoretical approach to Shor’s Algorithm and Quantum Bits, series ”De Cifris Augustae Taurinorum”, Francesco Stocco 4



Introduction

Definition

An n-qubit is a vector of norm 1 in a hermitian space
V ∼= C2n = (C2)⊗n. The set of n-qubits is denoted by Qn.

In the case n = 1, 2:

1-qubits: |0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
;

2-qubits: |00〉 :=


1
0
0
0

, |01〉 :=


0
1
0
0

, |10〉 :=


0
0
1
0

, |11〉 :=


0
0
0
1

 .

A theoretical approach to Shor’s Algorithm and Quantum Bits, series ”De Cifris Augustae Taurinorum”, Francesco Stocco 5



Introduction

Let x , n ∈ N with 2n > x , then the x th vector of the n−qubits
basis is represented as

|x〉n = |xn−1xn−2 . . . x0〉 = |xn−1〉 ⊗ |xn−2〉 · · · ⊗ |x0〉 ,

where x =
∑n−1

j=0 2jxj .

A generic n-qubit is represented as a superposition

|ψ〉n =
2n−1∑
x=0

αx |x〉n with
2n−1∑
x=0

|αx |2 = 1.
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Introduction

Let n,m be positive integers, there’s a bilinear map

Qn × Qm −→ Qn+m

(|ψ〉n , |φ〉m) 7−→ |ψ〉n ⊗ |φ〉m .

As an example
0
0
1
0

 = |10〉 = |1〉 ⊗ |0〉 =

(
0

1

)
⊗
(

1

0

)
=


0

(
1
0

)
1

(
1
0

)
 .
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Introduction

Notice that a 2-qubit is not always given by two 1-qubits. As an
example

1√
2

(|00〉+ |11〉) 6= |ψ〉1 ⊗ |φ〉1 ∀ |ψ〉1 , |φ〉1 ∈ Q1.

However, we have clearly that Q2 is spanned by 2-qubits that are
given by two 1-qubits.
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Quantum gates

Gates acting on Q1

Hadamard H : |x〉 7→ 1√
2

(|0〉+ (−1)x |1〉)

NOT X : |x〉 7→ |x ⊕ 1〉

Phase Shift Rn : |x〉 7→ e
2πix
2n |x〉

Matrix representations

H :
1√
2

(
1 1
1 −1

)
X :

(
0 1
1 0

)
Rn :

(
1 0

0 e
2πix
2n

)
Circuit notation

⊕H X Rn
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Quantum gates

Gates acting on Q2

Controlled NOT C X : |xy〉 7→ |x , y ⊕ x〉
SWAP SWAP : |xy〉 7→ |yx〉

Matrix representations

C X :


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 SWAP :


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Circuit notation
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Quantum gates

Let f : {0, 1}n → {0, 1}m, up to special cases we cannot define a
gate acting as

Uf : Qn −→ Qm

|x〉n 7−→
∣∣f (x)

〉
m

because is not generally a unitary transformation from a space to
itself. Then we consider

Uf :Qn+m −→ Qn+m

|x〉n ⊗ |y〉m 7→ |x〉n ⊗
∣∣y ⊕ f (x)

〉
m
.
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Measuring Qubits

Let |ψ〉n be a superposition of n-qubits. If we want to measure the
k first qubits, we write

|ψ〉n =
2k−1∑
x=0

|x〉k ⊗ |ψx〉n−k .

The outcome of the measure is x and the quantum state is left to

|x〉k ⊗ |ψx〉n−k
|| |ψx〉n−k ||

,

with probability
|||ψx〉n−k ||

2.

Circuit notation
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2- Quantum Fourier Transform over
Z�2nZ



Quantum Fourier Transform over Z�2nZ

Definition

Let x be a an integer in {0, . . . , 2n − 1}, we define the Quantum
Fourier Transform over Z�2nZ of the n-qubit |x〉n as

QFTn(|x〉n) =
1√
2n

2n−1∑
y=0

e
2πxy
2n |y〉n .

Let wk be e
2πi

2k , then we will need later also the equality:

QFTn(|x〉n) =
|0〉+ w x

1 |1〉√
2

⊗ |0〉+ w x
2 |1〉√

2
⊗ · · · ⊗ |0〉+ w x

n |1〉√
2

.

(1)
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QFTn circuit

The quantum circuit which performs the Quantum Fourier
Transform is constructed out of Hadamard and Controlled Phase
Shift gates.

. . .

. . . . . .

. . .

. . .

|xn−1〉 H |y0〉

|xn−2〉 R2 H |y1〉

|x1〉 Rn−1 Rn−2 H |yn−2〉

|x0〉 Rn Rn−1 R2 H |yn−1〉
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3- Shor’s Algorithm



Shor’s Algorithm

Let N be a positive integer and a be an integer such that
gcd(a,N) = 1, then Shor’s algorithm aim is to find the period of
the function

f (x) = ax mod N,

with time complexity polynomial in log2N.

The algorithm is divided in a main quantum part and a classical
post processing. The interpretation of the quantum part is the
subject of this presentation.
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3.1- Hidden Subgroup Problem



Hidden Subgroup Problem

Problem

Let G be a finitely generated group and X be a set. Given a
function f : G → X such that there exists a subgroup H < G with
the following property

f (g) = f (g ′)⇔ g ′ = gh ∃h ∈ H,

find a generating set for H.
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Characters

Let G be a group, a character of G is a group homomorphism
χ : G → C∗. The set Ĝ of characters of G is called the dual group
of G .

Indeed, the set Ĝ , equipped with

Ĝ × Ĝ −→ Ĝ

(χ1, χ2) 7−→ χ1χ2 : g 7→ χ1(g)χ2(g),

is a group.

From now on, the group G will be a finite abelian group. In this
particular case we have Ĝ ∼= G , however the isomorphism is not
canonical.

A theoretical approach to Shor’s Algorithm and Quantum Bits, series ”De Cifris Augustae Taurinorum”, Francesco Stocco 20



Abelian Quantum Fourier Transform

Let f : G → X , in this general context the Quantum Fourier
Transform considered is a gate acting in the following way.

QFT
( 1√
|G |

∑
g∈G
|g〉 ⊗

∣∣f (g)
〉 )

=
1√
|G |

∑
χ∈Ĝ

|χ〉 ⊗
∣∣∣f̂ (χ)

〉
,

where ∣∣∣f̂ (χ)
〉

=
1√
|G |

∑
g∈G

χ(g)
∣∣f (g)

〉
.

Of course, it can be proved that if G = Z�2nZ then applying QFTn

to the register |g〉 gives the same result.
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HSP circuit

Given a function f with the assumptions of HSP, this quantum

circuit returns a uniformly distributed χ ∈ Ĝ�H, where Ĝ�H is

viewed as the subset of Ĝ acting trivial on H.

|0〉⊗n US

Uf

QFT

|0〉⊗m

1 2 3 4

A theoretical approach to Shor’s Algorithm and Quantum Bits, series ”De Cifris Augustae Taurinorum”, Francesco Stocco 22



|0〉⊗n US

Uf

|0〉⊗m

1 2

1 The gate US sends |0〉⊗n to the uniform superposition

|0〉⊗n 7−→ 1√
|G |

∑
x∈G
|g〉 .

2 The gate Uf acts as defined before.

1√
|G |

∑
x∈G
|g〉 ⊗ |0〉⊗m 7−→ 1√

|G |

∑
x∈G
|g〉 ⊗

∣∣f (g)
〉
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QFT

3 4

3 QFT gives

1√
|G |

∑
x∈G
|g〉 ⊗

∣∣f (g)
〉
7→ 1

|G |
∑
χ∈Ĝ

|χ〉 ⊗
(∑

g∈G
χ(g)

∣∣f (g)
〉 )

=
1∣∣G�H∣∣

∑
χ∈Ĝ
χ|H=1

|χ〉 ⊗
∑

g∈G�H

χ(g)
∣∣f (g)

〉

4 The outcome of the measure is χ ∈ Ĝ�H with probability∥∥∥∥∥∥∥
1∣∣G�H∣∣

∑
g∈G�H

χ(g)
∣∣f (g)

〉∥∥∥∥∥∥∥
2

=
1∣∣G�H∣∣ .
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Shor as HSP

Implementing Shor’s algorithm, to find the order r of a modulo N,
requires the following setting:

|0〉⊗n=2dlog2 Ne US ← H⊗n

Uf

QFT ← QFTn

|0〉⊗m=dlog2 Ne

where

f : G → {0, . . . ,N − 1}
x 7−→ ax mod N,

with G = Z�2nZ and H = 〈r〉 ≤ G .
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Shor as HSP

Observe that, from a theoretical point of view, the previous setting
is well defined if the period r divides 2n. Clearly, this is not always
the case and a classical post processing is generally needed to
recover r with good probability.

This is the main reason why Shor’s algorithm is a probabilistic
algorithm.
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Shor DLP as HSP

Following the same line as factoring, Shor provides a solution to
discrete logarithm problem (DLP) in a cyclic group C = 〈g〉 of
order M. Let x ∈ C , the HSP setting to find y ∈ Z�MZ such that
g y = x is described below.

The group is
G = Z�MZ× Z�MZ

The function is

f : G −→ C

(a, b) 7−→ gax−b

The hidden subgroup is

H = 〈y , 1〉 ≤ G
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3.2- Quantum Phase Estimation



Quantum Phase Estimation

Problem

Let U be a unitary transformation. Given an eigenstate |ψ〉 of U
find the phase θ ∈ [0, 1) describing its eigenvalue

U |ψ〉 = e2πiθ |ψ〉 .
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Preliminary remark

We point out the following main ingredient.

C U
|0〉+ |1〉√

2
⊗ |ψ〉 =

1√
2

(
|0〉 |ψ〉+ e2πiθ |1〉 |ψ〉

)
=
|0〉+ e2πiθ |1〉√

2
⊗ |ψ〉

In this notation C U can be interpreted as a gate acting just on the
first qubit since the last part |ψ〉 is fixed.
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QPE circuit

Given a unitary transformation U acting on m−qubits and an its
eigenstate |ψ〉m, this quantum circuit computes 2nθ where θ is the
phase of the corresponding eigenvalue.

x
|0〉⊗n H⊗n QFT †n

|ψ〉m Ux |ψ〉m

1 2
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x
|0〉⊗n

H⊗n

|ψ〉m Ux

1

1 The gate in the middle sends |x〉n |ψ〉m to |x〉n Ux |ψ〉m. It is
constructed out of 2j gates U acting on the register |ψ〉
controlled by the j-th qubit for all j ’s.

As an example, if
x = n = 2

|1〉

|0〉

|ψ〉m U U U

=

|1〉
|0〉

|ψ〉m U2

Hence, previous remark implies that the state in 1 is

1√
2n

(|0〉+|1〉)⊗n⊗|ψ〉m 7→
|0〉+ w2nθ

1 |1〉√
2

⊗· · · |0〉+ w2nθ
n |1〉√
2

⊗|ψ〉m .

The first register is exactly the Quantum Fourier Transform
applied to |x〉n = |2nθ〉n, see (1).
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x
|0〉⊗n

H⊗n

|ψ〉m Ux

1

1 The gate in the middle sends |x〉n |ψ〉m to |x〉n Ux |ψ〉m. It is
constructed out of 2j gates U acting on the register |ψ〉
controlled by the j-th qubit for all j ’s. As an example, if
x = n = 2

|1〉

|0〉

|ψ〉m U U U

=

|1〉
|0〉

|ψ〉m U2

Hence, previous remark implies that the state in 1 is

1√
2n

(|0〉+|1〉)⊗n⊗|ψ〉m 7→
|0〉+ w2nθ

1 |1〉√
2

⊗· · · |0〉+ w2nθ
n |1〉√
2

⊗|ψ〉m .

The first register is exactly the Quantum Fourier Transform
applied to |x〉n = |2nθ〉n, see (1).
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QFT†n

2

2 Applying the Inverse Quantum Fourier Transform over Z�2nZ
to the first register gives

|0〉+ w2nθ
1 |1〉√
2

⊗ · · · |0〉+ w2nθ
n |1〉√
2

7→ |2nθ〉n .

This works well if 2nθ is an integer, which is not always true. In
the general case, the circuit returns an estimation of θ which
allows us to recover it through a continued fraction argument with
good probability.

A theoretical approach to Shor’s Algorithm and Quantum Bits, series ”De Cifris Augustae Taurinorum”, Francesco Stocco 33



Shor as QPE

Implementing Shor’s algorithm, to find the order r of a modulo N,
requires the following setting:

x
|0〉⊗n=2dlog2 Ne H⊗n QFT †n

1√
r

r−1∑
s=0
|ψs〉m = |1〉m=dlog2 Ne Ux

where
U : |y〉m 7−→ |ay mod N〉m

and

|ψs〉m =
1√
r

r−1∑
k=0

e−
2πisk

r

∣∣∣ak mod N
〉
m

s.t. U |ψs〉m = e
2πis
r |ψs〉m .
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Shor as QPE

To avoid any inconvenience in producing |ψs〉m for some s, we
observe

|1〉m =
1√
r

r−1∑
s=0

|ψs〉m .

Therefore, using |1〉 which is a uniform superposition of those
eigenstates and reasoning by linearity, the final measure gives

2ns

r
,

for s a random integer between 0 and r − 1.
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4- Breaking RSA



Direct attack to RSA

Given N = pq, Alice wants to send a message b ∈ Z�NZ
∗

to Bob.

Bob’s public key is c ∈ Z�(p − 1)(q − 1)Z
∗
, then Alice sends him

a ≡ bc mod pq.

Assume Eve can detect the order r of a, gcd(r , c) = 1 implies that
r is also the order of b. Moreover, there exists d such that cd ≡ 1
mod r .

ad ≡ bcd ≡ b1+mr ≡ b mod pq.
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Factorization of N = pq

It can be proved that there’s a good probability that the detected
period r is even. If so, we have

ar ≡ 1 mod pq a
r
2 6≡ 1 mod pq.

Assume also that
a

r
2 6≡ −1 mod pq,

since
(a

r
2 − 1)(a

r
2 + 1) ≡ 0 mod pq

we conclude

{p, q} = {gcd(a
r
2 − 1,N), gcd(a

r
2 + 1,N)}.
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