A theoretical approach to Shor's Algorithm and Quantum Bits

Francesco Stocco
March 26, 2021

Outline

干 Telsy

1 Introduction to Qubits

2 Quantum Fourier Transform over $\mathbb{Z} / 2^{n} \mathbb{Z}$

3 Shor's Algorithm
■ Hidden Subgroup Problem

- Quantum Phase Estimation

4 Breaking RSA

1- Introduction to Qubits

Introduction

干Telsy

1 A hermitian space is a finite dimensional vector space V over \mathbb{C} equipped with a hermitian form

$$
\langle\cdot, \cdot\rangle: V^{2} \longrightarrow \mathbb{C},
$$

that is

- sesquilinear:

$$
\begin{aligned}
\left\langle\lambda x+\mu x^{\prime}, y\right\rangle & =\bar{\lambda}\langle x, y\rangle+\bar{\mu}\left\langle x^{\prime}, y\right\rangle \\
\left\langle x, \lambda y+\mu y^{\prime}\right\rangle & =\lambda\langle x, y\rangle+\mu\left\langle x, y^{\prime}\right\rangle
\end{aligned}
$$

- symmetric: $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- positive: $\langle x, x\rangle>0$ if $x \neq 0$.

2 We define also for $x \in V$ the norm $\|x\|=\sqrt{\langle x, x\rangle}$.
3 Let V, W^{1} be hermitian spaces, $f: V \rightarrow W$ is a unitary morphism if it is \mathbb{C}-linear and

$$
\langle f(x), f(y)\rangle=\langle x, y\rangle \quad \forall x, y \in V
$$

${ }^{1}$ actually we will consider always $V=W$ in this presentation.

Introduction

干 Telsy

Definition

An n-qubit is a vector of norm 1 in a hermitian space $V \cong \mathbb{C}^{2^{n}}=\left(\mathbb{C}^{2}\right)^{\otimes n}$. The set of n-qubits is denoted by Q_{n}.

In the case $n=1,2$:

- 1-qubits: $|0\rangle:=\binom{1}{0},|1\rangle:=\binom{0}{1} ;$
- 2-qubits: $|00\rangle:\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),|01\rangle:=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),|10\rangle:=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),|11\rangle:=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$.

Introduction

干Telsy

■ Let $x, n \in \mathbb{N}$ with $2^{n}>x$, then the $x^{\text {th }}$ vector of the n-qubits basis is represented as

$$
|x\rangle_{n}=\left|x_{n-1} x_{n-2} \ldots x_{0}\right\rangle=\left|x_{n-1}\right\rangle \otimes\left|x_{n-2}\right\rangle \cdots \otimes\left|x_{0}\right\rangle
$$

where $x=\sum_{j=0}^{n-1} 2^{j} x_{j}$.
■ A generic n-qubit is represented as a superposition

$$
|\psi\rangle_{n}=\sum_{x=0}^{2^{n}-1} \alpha_{x}|x\rangle_{n} \text { with } \sum_{x=0}^{2^{n}-1}\left|\alpha_{x}\right|^{2}=1
$$

Introduction

Let n, m be positive integers, there's a bilinear map

$$
\begin{aligned}
Q_{n} \times Q_{m} & \longrightarrow Q_{n+m} \\
\left(|\psi\rangle_{n},|\phi\rangle_{m}\right) & \longmapsto|\psi\rangle_{n} \otimes|\phi\rangle_{m}
\end{aligned}
$$

As an example

$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=|10\rangle=|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\binom{0\binom{1}{0}}{1\binom{1}{0}} .
$$

Introduction

干Telsy

Notice that a 2-qubit is not always given by two 1-qubits. As an example

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \neq|\psi\rangle_{1} \otimes|\phi\rangle_{1} \quad \forall|\psi\rangle_{1},|\phi\rangle_{1} \in Q_{1}
$$

However, we have clearly that Q_{2} is spanned by 2-qubits that are given by two 1-qubits.

Quantum gates

Gates acting on Q_{1}

> Hadamard
> NOT
> Phase Shift

Matrix representations

$$
\mathbf{H}: \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \mathbf{X}:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \mathbf{R}_{n}:\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i x}{2^{n}}}
\end{array}\right)
$$

Circuit notation

Quantum gates

Gates acting on Q_{2}

$$
\begin{array}{ll}
\text { Controlled NOT } & \text { CX: }|x y\rangle \mapsto|x, y \oplus x\rangle \\
\text { SWAP } & \text { SWAP }:|x y\rangle \mapsto|y x\rangle
\end{array}
$$

Matrix representations

$$
\mathbf{C X}:\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { SWAP }:\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Circuit notation

Quantum gates

ㅍTelsy

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, up to special cases we cannot define a gate acting as

$$
\begin{aligned}
& \mathbf{U}_{f}: Q_{n} \longrightarrow Q_{m} \\
& \quad|x\rangle_{n} \longmapsto|f(x)\rangle_{m}
\end{aligned}
$$

because is not generally a unitary transformation from a space to itself. Then we consider

$$
\begin{aligned}
\mathbf{U}_{f}: & Q_{n+m} \longrightarrow Q_{n+m} \\
& |x\rangle_{n} \otimes|y\rangle_{m} \mapsto|x\rangle_{n} \otimes|y \oplus f(x)\rangle_{m} .
\end{aligned}
$$

Measuring Qubits

ㅍTelsy

Let $|\psi\rangle_{n}$ be a superposition of n-qubits. If we want to measure the k first qubits, we write

$$
|\psi\rangle_{n}=\sum_{x=0}^{2^{k}-1}|x\rangle_{k} \otimes\left|\psi_{x}\right\rangle_{n-k}
$$

The outcome of the measure is x and the quantum state is left to

$$
\frac{|x\rangle_{k} \otimes\left|\psi_{x}\right\rangle_{n-k}}{\|\left|\psi_{x}\right\rangle_{n-k} \|}
$$

with probability

$$
\|\left|\psi_{x}\right\rangle_{n-k} \|^{2}
$$

Circuit notation

2- Quantum Fourier Transform over

 $\mathbb{Z} / 2^{n} \mathbb{Z}$
Quantum Fourier Transform over $\mathbb{Z} / 2^{n} \mathbb{Z}$ ((Telsy

Definition

Let x be a an integer in $\left\{0, \ldots, 2^{n}-1\right\}$, we define the Quantum Fourier Transform over $\mathbb{Z} / 2^{n} \mathbb{Z}$ of the n-qubit $|x\rangle_{n}$ as

$$
\mathbf{Q F T}_{n}\left(|x\rangle_{n}\right)=\frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{\frac{2 \pi x y}{2^{n}}}|y\rangle_{n} .
$$

Let w_{k} be $e^{\frac{2 \pi i}{2^{k}}}$, then we will need later also the equality:

$$
\begin{equation*}
\text { QFT }_{n}\left(|x\rangle_{n}\right)=\frac{|0\rangle+w_{1}^{\times}|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+w_{2}^{\times}|1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle+w_{n}^{\times}|1\rangle}{\sqrt{2}} . \tag{1}
\end{equation*}
$$

QFT $_{n}$ circuit

干Telsy

The quantum circuit which performs the Quantum Fourier Transform is constructed out of Hadamard and Controlled Phase Shift gates.

3- Shor's Algorithm

Shor's Algorithm

干 Telsy

Let N be a positive integer and a be an integer such that $\operatorname{gcd}(a, N)=1$, then Shor's algorithm aim is to find the period of the function

$$
f(x)=a^{x} \quad \bmod N
$$

with time complexity polynomial in $\log _{2} N$.
The algorithm is divided in a main quantum part and a classical post processing. The interpretation of the quantum part is the subject of this presentation.

3.1- Hidden Subgroup Problem

Hidden Subgroup Problem

干 Telsy

Problem

Let G be a finitely generated group and X be a set. Given a function $f: G \rightarrow X$ such that there exists a subgroup $H<G$ with the following property

$$
f(g)=f\left(g^{\prime}\right) \Leftrightarrow g^{\prime}=g h \exists h \in H
$$

find a generating set for H.

Characters

干Telsy

Let G be a group, a character of G is a group homomorphism $\chi: G \rightarrow \mathbb{C}^{*}$. The set \hat{G} of characters of G is called the dual group of G.

Indeed, the set \hat{G}, equipped with

$$
\begin{aligned}
\hat{G} \times \hat{G} & \longrightarrow \hat{G} \\
\left(\chi_{1}, \chi_{2}\right) & \longmapsto \chi_{1} \chi_{2}: g \mapsto \chi_{1}(g) \chi_{2}(g),
\end{aligned}
$$

is a group.
From now on, the group G will be a finite abelian group. In this particular case we have $\hat{G} \cong G$, however the isomorphism is not canonical.

Abelian Quantum Fourier Transform

Let $f: G \rightarrow X$, in this general context the Quantum Fourier Transform considered is a gate acting in the following way.

$$
\operatorname{QFT}\left(\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \otimes|f(g)\rangle\right)=\frac{1}{\sqrt{|G|}} \sum_{\chi \in \hat{G}}|\chi\rangle \otimes|\hat{f}(\chi)\rangle,
$$

where

$$
|\hat{f}(\chi)\rangle=\frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g)|f(g)\rangle
$$

Of course, it can be proved that if $G=\mathbb{Z} / 2^{n} \mathbb{Z}$ then applying QFT n to the register $|g\rangle$ gives the same result.

HSP circuit

干Telsy

Given a function f with the assumptions of HSP, this quantum circuit returns a uniformly distributed $\chi \in \widehat{G / H}$, where $\widehat{G / H}$ is viewed as the subset of \hat{G} acting trivial on H.

1 The gate US sends $|0\rangle^{\otimes n}$ to the uniform superposition

$$
|0\rangle^{\otimes n} \longmapsto \frac{1}{\sqrt{|G|}} \sum_{x \in G}|g\rangle .
$$

2 The gate \mathbf{U}_{f} acts as defined before.

$$
\frac{1}{\sqrt{|G|}} \sum_{x \in G}|g\rangle \otimes|0\rangle^{\otimes m} \longmapsto \frac{1}{\sqrt{|G|}} \sum_{x \in G}|g\rangle \otimes|f(g)\rangle
$$

3 QFT gives

$$
\begin{aligned}
\frac{1}{\sqrt{|G|}} \sum_{x \in G}|g\rangle \otimes|f(g)\rangle & \mapsto \frac{1}{|G|} \sum_{\chi \in \hat{G}}|\chi\rangle \otimes\left(\sum_{g \in G} \chi(g)|f(g)\rangle\right) \\
& =\frac{1}{|G / H|} \sum_{\substack{\chi \in \hat{G} \\
\chi \mid H=1}}|\chi\rangle \otimes \sum_{g \in G / H} \chi(g)|f(g)\rangle
\end{aligned}
$$

4 The outcome of the measure is $\chi \in \widehat{G / H}$ with probability

$$
\| \frac{1}{|G / H|} \sum_{g \in G / H} \chi(g)|f(g)\rangle \|^{2}=\frac{1}{|G / H|} .
$$

Shor as HSP

干Telsy

Implementing Shor's algorithm, to find the order r of a modulo N, requires the following setting:

where

$$
\begin{aligned}
f: G & \rightarrow\{0, \ldots, N-1\} \\
x & \longmapsto a^{x} \quad \bmod N,
\end{aligned}
$$

with $G=\mathbb{Z} / 2^{n} \mathbb{Z}$ and $H=\langle r\rangle \leq G$.

Shor as HSP

FTelsy

Observe that, from a theoretical point of view, the previous setting is well defined if the period r divides 2^{n}. Clearly, this is not always the case and a classical post processing is generally needed to recover r with good probability.

This is the main reason why Shor's algorithm is a probabilistic algorithm.

Shor DLP as HSP

Following the same line as factoring, Shor provides a solution to discrete logarithm problem (DLP) in a cyclic group $C=\langle g\rangle$ of order M. Let $x \in C$, the HSP setting to find $y \in \mathbb{Z} / M \mathbb{Z}$ such that $g^{y}=x$ is described below.

- The group is

$$
G=\mathbb{Z} / M \mathbb{Z} \times \mathbb{Z} / M \mathbb{Z}
$$

- The function is

$$
\begin{aligned}
f: G & \longrightarrow C \\
(a, b) & \longmapsto g^{a} x^{-b}
\end{aligned}
$$

- The hidden subgroup is

$$
H=\langle y, 1\rangle \leq G
$$

3.2- Quantum Phase Estimation

Quantum Phase Estimation

ㅍTelsy

Problem

Let \mathbf{U} be a unitary transformation. Given an eigenstate $|\psi\rangle$ of \mathbf{U} find the phase $\theta \in[0,1)$ describing its eigenvalue

$$
\mathbf{U}|\psi\rangle=e^{2 \pi i \theta}|\psi\rangle .
$$

Preliminary remark

干Telsy

We point out the following main ingredient.

$$
\begin{aligned}
\mathbf{C} \mathbf{U} \frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes|\psi\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle|\psi\rangle+e^{2 \pi i \theta}|1\rangle|\psi\rangle\right) \\
& =\frac{|0\rangle+e^{2 \pi i \theta}|1\rangle}{\sqrt{2}} \otimes|\psi\rangle
\end{aligned}
$$

In this notation C U can be interpreted as a gate acting just on the first qubit since the last part $|\psi\rangle$ is fixed.

QPE circuit

干Telsy

Given a unitary transformation U acting on m-qubits and an its eigenstate $|\psi\rangle_{m}$, this quantum circuit computes $2^{n} \theta$ where θ is the phase of the corresponding eigenvalue.

1 The gate in the middle sends $|x\rangle_{n}|\psi\rangle_{m}$ to $|x\rangle_{n} \mathbf{U}^{x}|\psi\rangle_{m}$. It is constructed out of 2^{j} gates \mathbf{U} acting on the register $|\psi\rangle$ controlled by the j-th qubit for all j 's.

1 The gate in the middle sends $|x\rangle_{n}|\psi\rangle_{m}$ to $|x\rangle_{n} \mathbf{U}^{x}|\psi\rangle_{m}$. It is constructed out of 2^{j} gates \mathbf{U} acting on the register $|\psi\rangle$ controlled by the j-th qubit for all j 's. As an example, if $x=n=2$

Hence, previous remark implies that the state in 1 is
$\frac{1}{\sqrt{2^{n}}}(|0\rangle+|1\rangle)^{\otimes n} \otimes|\psi\rangle_{m} \mapsto \frac{|0\rangle+w_{1}^{2^{n} \theta}|1\rangle}{\sqrt{2}} \otimes \cdots \frac{|0\rangle+w_{n}^{2^{n} \theta}|1\rangle}{\sqrt{2}} \otimes|\psi\rangle_{m}$.
The first register is exactly the Quantum Fourier Transform applied to $|x\rangle_{n}=\left|2^{n} \theta\right\rangle_{n}$, see (1).

2 Applying the Inverse Quantum Fourier Transform over $\mathbb{Z} / 2^{n} \mathbb{Z}$ to the first register gives

$$
\frac{|0\rangle+w_{1}^{2^{n} \theta}|1\rangle}{\sqrt{2}} \otimes \ldots \frac{|0\rangle+w_{n}^{2^{n} \theta}|1\rangle}{\sqrt{2}} \mapsto\left|2^{n} \theta\right\rangle_{n} .
$$

This works well if $2^{n} \theta$ is an integer, which is not always true. In the general case, the circuit returns an estimation of θ which allows us to recover it through a continued fraction argument with good probability.

Shor as QPE

干Telsy

Implementing Shor's algorithm, to find the order r of a modulo N, requires the following setting:
where

$$
\mathbf{U}:|y\rangle_{m} \longmapsto|a y \quad \bmod N\rangle_{m}
$$

and
$\left|\psi_{s}\right\rangle_{m}=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2 \pi i s k}{r}}\left|a^{k} \quad \bmod N\right\rangle_{m}$ s.t. $\mathbf{U}\left|\psi_{s}\right\rangle_{m}=e^{\frac{2 \pi i s}{r}}\left|\psi_{s}\right\rangle_{m}$.

Shor as QPE

¥ Telsy

To avoid any inconvenience in producing $\left|\psi_{s}\right\rangle_{m}$ for some s, we observe

$$
|1\rangle_{m}=\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|\psi_{s}\right\rangle_{m}
$$

Therefore, using $|1\rangle$ which is a uniform superposition of those eigenstates and reasoning by linearity, the final measure gives

$$
\frac{2^{n} s}{r}
$$

for s a random integer between 0 and $r-1$.

4- Breaking RSA

Direct attack to RSA

Given $N=p q$, Alice wants to send a message $b \in \mathbb{Z} / N \mathbb{Z}^{*}$ to Bob. Bob's public key is $c \in \mathbb{Z} /(p-1)(q-1) \mathbb{Z}^{*}$, then Alice sends him

$$
a \equiv b^{c} \quad \bmod p q
$$

Assume Eve can detect the order r of $a, \operatorname{gcd}(r, c)=1$ implies that r is also the order of b. Moreover, there exists d such that $c d \equiv 1$ $\bmod r$.

$$
a^{d} \equiv b^{c d} \equiv b^{1+m r} \equiv b \quad \bmod p q .
$$

Factorization of $N=p q$

It can be proved that there's a good probability that the detected period r is even. If so, we have

$$
a^{r} \equiv 1 \quad \bmod p q \quad a^{\frac{r}{2}} \not \equiv 1 \quad \bmod p q
$$

Assume also that

$$
a^{\frac{r}{2}} \not \equiv-1 \bmod p q
$$

since

$$
\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right) \equiv 0 \quad \bmod p q
$$

we conclude

$$
\{p, q\}=\left\{\operatorname{gcd}\left(a^{\frac{r}{2}}-1, N\right), \operatorname{gcd}\left(a^{\frac{r}{2}}+1, N\right)\right\} .
$$

Bibliography

干Telsy

圁 Shor P．W．，Polynomial－Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer，SIAM J．Comp．， 26，1484－1509， 1997.

Beauregard S．，Circuit for Shor＇s algorithm using $2 n+3$ qubits， Quantum Information and Computation，Vol．3，No．2，175－185， 2003.

围 Mermin D．，Quantum Computer Science：An Introduction．， Cambridge：Cambridge University Press， 2007.

Nielsen M．，Chuang I．，Quantum Computation and Quantum Information：10th Anniversary Edition．，Cambridge：Cambridge University Press， 2010.

Q\&A

francesco.stocco@telsy.it

