A theoretical approach to Shor's Algorithm and Quantum Bits

Francesco Stocco March 26, 2021

Telsy

1 Introduction to Qubits

2 Quantum Fourier Transform over $\mathbb{Z}_{2^n\mathbb{Z}}$

3 Shor's Algorithm

- Hidden Subgroup Problem
- Quantum Phase Estimation

4 Breaking RSA

1- Introduction to Qubits

Introduction

$$\langle \cdot, \cdot \rangle : V^2 \longrightarrow \mathbb{C},$$

that is

sesquilinear:

$$\begin{split} &\langle \lambda x + \mu x', y \rangle = \bar{\lambda} \langle x, y \rangle + \bar{\mu} \langle x', y \rangle \\ &\langle x, \lambda y + \mu y' \rangle = \lambda \langle x, y \rangle + \mu \langle x, y' \rangle \end{split}$$

Telsy

symmetric: ⟨x, y⟩ = ⟨y, x⟩
positive: ⟨x, x⟩ > 0 if x ≠ 0.
We define also for x ∈ V the norm ||x|| = √⟨x, x⟩.
Let V, W¹ be hermitian spaces, f : V → W is a unitary morphism if it is C-linear and

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \qquad \forall x, y \in V.$$

¹actually we will consider always V = W in this presentation.

Definition

An *n*-qubit is a vector of norm 1 in a hermitian space $V \cong \mathbb{C}^{2^n} = (\mathbb{C}^2)^{\otimes n}$. The set of *n*-qubits is denoted by Q_n .

In the case
$$n = 1, 2$$
:
1-qubits: $|0\rangle := \begin{pmatrix} 1\\0 \end{pmatrix}$, $|1\rangle := \begin{pmatrix} 0\\1 \end{pmatrix}$;
2-qubits: $|00\rangle := \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$, $|01\rangle := \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$, $|10\rangle := \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$, $|11\rangle := \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

■ Let $x, n \in \mathbb{N}$ with $2^n > x$, then the x^{th} vector of the n-qubits basis is represented as

$$|x\rangle_n = |x_{n-1}x_{n-2}\dots x_0\rangle = |x_{n-1}\rangle \otimes |x_{n-2}\rangle \dots \otimes |x_0\rangle,$$

where $x = \sum_{j=0}^{n-1} 2^{j} x_{j}$.

A generic *n*-qubit is represented as a *superposition*

$$|\psi\rangle_n = \sum_{x=0}^{2^n-1} \alpha_x \, |x\rangle_n \text{ with } \sum_{x=0}^{2^n-1} |\alpha_x|^2 = 1.$$

🐑 🎞 Telsy

Let n, m be positive integers, there's a bilinear map

$$Q_n \times Q_m \longrightarrow Q_{n+m}$$
$$(|\psi\rangle_n, |\phi\rangle_m) \longmapsto |\psi\rangle_n \otimes |\phi\rangle_m.$$

As an example

$$\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = |10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\begin{pmatrix}1\\0\\1\\1 \end{pmatrix} \\ 1\begin{pmatrix}1\\0 \end{pmatrix} \end{pmatrix}$$

Notice that a 2-qubit is not always given by two 1-qubits. As an example

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \neq |\psi\rangle_1 \otimes |\phi\rangle_1 \qquad \forall |\psi\rangle_1, |\phi\rangle_1 \in Q_1.$$

However, we have clearly that Q_2 is spanned by 2-qubits that are given by two 1-qubits.

Quantum gates

🔊 🎞 Telsy

Gates acting on Q_1

Hadamard NOT Phase Shift

$$\begin{split} \mathbf{H} : & |x\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{x} |1\rangle \\ \mathbf{X} : & |x\rangle \mapsto |x \oplus 1\rangle \\ \mathbf{R}_{n} : & |x\rangle \mapsto e^{\frac{2\pi i x}{2^{n}}} |x\rangle \end{split}$$

Matrix representations

$$\mathbf{H}: \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \qquad \mathbf{X}: \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \mathbf{R}_n: \begin{pmatrix} 1 & 0\\ 0 & e^{\frac{2\pi i x}{2^n}} \end{pmatrix}$$

Circuit notation

Quantum gates

Gates acting on Q_2

Controlled NOT SWAP $\begin{array}{l} \mathbf{C} \, \mathbf{X} : \, |xy\rangle \mapsto |x,y \oplus x\rangle \\ \mathbf{SWAP} : \, |xy\rangle \mapsto |yx\rangle \end{array}$

Matrix representations

$$\mathbf{CX} : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \mathbf{SWAP} : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Circuit notation

Let $f:\{0,1\}^n \rightarrow \{0,1\}^m,$ up to special cases we cannot define a gate acting as

$$\begin{aligned} \mathbf{U}_f : \ Q_n \longrightarrow Q_m \\ |x\rangle_n \longmapsto |f(x)\rangle_n \end{aligned}$$

because is not generally a unitary transformation from a space to itself. Then we consider

$$\begin{aligned} \mathbf{U}_{f} : Q_{n+m} &\longrightarrow Q_{n+m} \\ |x\rangle_{n} \otimes |y\rangle_{m} &\mapsto |x\rangle_{n} \otimes |y \oplus f(x)\rangle_{m} . \end{aligned}$$

Measuring Qubits

Let $|\psi\rangle_n$ be a superposition of *n*-qubits. If we want to measure the k first qubits, we write

🔬 🃰 Telsy

$$|\psi\rangle_n = \sum_{x=0}^{2^k-1} |x\rangle_k \otimes |\psi_x\rangle_{n-k} \,.$$

The outcome of the measure is x and the quantum state is left to

$$\frac{|x\rangle_k \otimes |\psi_x\rangle_{n-k}}{||\psi_x\rangle_{n-k}||},$$

with probability

 $|||\psi_x\rangle_{n-k}||^2.$

Circuit notation

2- Quantum Fourier Transform over

Quantum Fourier Transform over $\mathbb{Z}_{2^n\mathbb{Z}}$ \bigcirc **EETelsy**

Definition

Let x be a an integer in $\{0, \ldots, 2^n - 1\}$, we define the *Quantum* Fourier Transform over $\mathbb{Z}_{2^n\mathbb{Z}}$ of the *n*-qubit $|x\rangle_n$ as

$$\mathsf{QFT}_n(|x\rangle_n) = \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n-1} e^{\frac{2\pi xy}{2^n}} |y\rangle_n.$$

Let w_k be $e^{\frac{2\pi i}{2^k}}$, then we will need later also the equality:

$$\mathsf{QFT}_n(|x\rangle_n) = \frac{|0\rangle + w_1^x |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle + w_2^x |1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle + w_n^x |1\rangle}{\sqrt{2}}.$$
(1)

The quantum circuit which performs the Quantum Fourier Transform is constructed out of Hadamard and Controlled Phase Shift gates.

🐑 📰 Telsy

3- Shor's Algorithm

Let *N* be a positive integer and *a* be an integer such that gcd(a, N) = 1, then Shor's algorithm aim is to find the period of the function

🛛 📰 Telsv

 $f(x) = a^x \mod N,$

with time complexity polynomial in $\log_2 N$.

The algorithm is divided in a main quantum part and a classical post processing. The interpretation of the quantum part is the subject of this presentation.

3.1- Hidden Subgroup Problem

Problem

Let G be a finitely generated group and X be a set. Given a function $f : G \to X$ such that there exists a subgroup H < G with the following property

$$f(g) = f(g') \Leftrightarrow g' = gh \ \exists h \in H,$$

find a generating set for H.

🐑 🃰 Telsy

Let G be a group, a *character of* G is a group homomorphism $\chi: G \to \mathbb{C}^*$. The set \hat{G} of characters of G is called the *dual group of* G.

Indeed, the set \hat{G} , equipped with

$$\hat{G} \times \hat{G} \longrightarrow \hat{G}$$

 $(\chi_1, \chi_2) \longmapsto \chi_1 \chi_2 : g \mapsto \chi_1(g) \chi_2(g),$

is a group.

From now on, the group G will be a **finite abelian** group. In this particular case we have $\hat{G} \cong G$, however the isomorphism is not canonical.

Let $f : G \to X$, in this general context the *Quantum Fourier Transform* considered is a gate acting in the following way.

$$\mathsf{QFT}\left(\frac{1}{\sqrt{|G|}}\sum_{g\in G}|g\rangle\otimes\left|f(g)\right\rangle\right)=\frac{1}{\sqrt{|G|}}\sum_{\chi\in\hat{G}}|\chi\rangle\otimes\left|\hat{f}(\chi)\right\rangle,$$

🐑 🎞 Telsv

where

$$\left|\hat{f}(\chi)\right\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \chi(g) \left|f(g)\right\rangle.$$

Of course, it can be proved that if $G = \mathbb{Z}_{2^n \mathbb{Z}}$ then applying **QFT**_n to the register $|g\rangle$ gives the same result.

Given a function f with the assumptions of HSP, this quantum circuit returns a uniformly distributed $\chi \in \widehat{G_{H}}$, where $\widehat{G_{H}}$ is viewed as the subset of \hat{G} acting trivial on H.

1 The gate **US** sends $|0\rangle^{\otimes n}$ to the uniform superposition

$$|0\rangle^{\otimes n} \longmapsto \frac{1}{\sqrt{|G|}} \sum_{x \in G} |g\rangle.$$

2 The gate U_f acts as defined before.

$$rac{1}{\sqrt{|G|}} \sum_{x \in G} \ket{g} \otimes \ket{0}^{\otimes m} \longmapsto rac{1}{\sqrt{|G|}} \sum_{x \in G} \ket{g} \otimes ig| f(g) ig
angle$$

3 QFT gives

$$\begin{split} \frac{1}{\sqrt{|G|}} \sum_{x \in G} |g\rangle \otimes |f(g)\rangle &\mapsto \frac{1}{|G|} \sum_{\chi \in \hat{G}} |\chi\rangle \otimes \Big(\sum_{g \in G} \chi(g) |f(g)\rangle\Big) \\ &= \frac{1}{|G/H|} \sum_{\substack{\chi \in \hat{G} \\ \chi|_{H} = 1}} |\chi\rangle \otimes \sum_{g \in G/H} \chi(g) |f(g)\rangle \end{split}$$

4 The outcome of the measure is $\chi \in \widehat{G_{H}}$ with probability

$$\left\|\frac{1}{\left|\overline{G}_{/H}\right|}\sum_{g\in\overline{G}_{/H}}\chi(g)\left|f(g)\right\rangle\right\|^{2}=\frac{1}{\left|\overline{G}_{/H}\right|}$$

🐑 🎞 Telsy

Implementing Shor's algorithm, to find the order r of a modulo N, requires the following setting:

where

$$f: G \to \{0, \dots, N-1\}$$
$$x \longmapsto a^x \mod N,$$

with
$$G = \mathbb{Z}_{2^n \mathbb{Z}}$$
 and $H = \langle r \rangle \leq G$.

Observe that, from a theoretical point of view, the previous setting is well defined if the period r divides 2^n . Clearly, this is not always the case and a classical post processing is generally needed to recover r with good probability.

This is the main reason why Shor's algorithm is a probabilistic algorithm.

Following the same line as factoring, Shor provides a solution to discrete logarithm problem (DLP) in a cyclic group $C = \langle g \rangle$ of order M. Let $x \in C$, the HSP setting to find $y \in \mathbb{Z}/_{M\mathbb{Z}}$ such that $g^y = x$ is described below.

The group is

$$G = \mathbb{Z}_{M\mathbb{Z}} \times \mathbb{Z}_{M\mathbb{Z}}$$

🐑 🎞 Telsv

The function is

$$f: G \longrightarrow C$$
$$(a,b) \longmapsto g^{a} x^{-b}$$

The hidden subgroup is

$$H = \langle y, 1 \rangle \leq G$$

3.2- Quantum Phase Estimation

Problem

Let **U** be a unitary transformation. Given an eigenstate $|\psi\rangle$ of **U** find the phase $\theta \in [0, 1)$ describing its eigenvalue

$$\mathbf{U} \left| \psi \right\rangle = e^{2\pi i \theta} \left| \psi \right\rangle.$$

We point out the following main ingredient.

$$\mathbf{C} \mathbf{U} \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle |\psi\rangle + e^{2\pi i \theta} |1\rangle |\psi\rangle \Big)$$
$$= \frac{|0\rangle + e^{2\pi i \theta} |1\rangle}{\sqrt{2}} \otimes |\psi\rangle$$

In this notation ${\bf C}\,{\bf U}$ can be interpreted as a gate acting just on the first qubit since the last part $|\psi\rangle$ is fixed.

🖉 🎞 Telsy

Given a unitary transformation U acting on m-qubits and an its eigenstate $|\psi\rangle_m$, this quantum circuit computes $2^n\theta$ where θ is the phase of the corresponding eigenvalue.

1 The gate in the middle sends $|x\rangle_n |\psi\rangle_m$ to $|x\rangle_n \mathbf{U}^x |\psi\rangle_m$. It is constructed out of 2^j gates **U** acting on the register $|\psi\rangle$ controlled by the *j*-th qubit for all *j*'s.

1 The gate in the middle sends $|x\rangle_n |\psi\rangle_m$ to $|x\rangle_n \mathbf{U}^{\times} |\psi\rangle_m$. It is constructed out of 2^j gates **U** acting on the register $|\psi\rangle$ controlled by the *j*-th qubit for all *j*'s. As an example, if x = n = 21 $|\psi\rangle_m \equiv U^2$ $|\psi\rangle_{m}$ Hence, previous remark implies that the state in 1 is $\frac{1}{\sqrt{2^n}}(|0\rangle+|1\rangle)^{\otimes n}\otimes|\psi\rangle_m\mapsto\frac{|0\rangle+w_1^{2^n\theta}|1\rangle}{\sqrt{2}}\otimes\cdots\frac{|0\rangle+w_n^{2^n\theta}|1\rangle}{\sqrt{2}}\otimes|\psi\rangle_m.$ The first register is exactly the Quantum Fourier Transform applied to $|x\rangle_n = |2^n\theta\rangle_n$, see (1).

A theoretical approach to Shor's Algorithm and Quantum Bits, series "De Cifris Augustae Taurinorum", Francesco Stocco 32

2 Applying the Inverse Quantum Fourier Transform over $\mathbb{Z}_{2^n\mathbb{Z}}$ to the first register gives

$$\frac{|0\rangle + w_1^{2^n\theta} |1\rangle}{\sqrt{2}} \otimes \cdots \frac{|0\rangle + w_n^{2^n\theta} |1\rangle}{\sqrt{2}} \mapsto |2^n\theta\rangle_n.$$

This works well if $2^n\theta$ is an integer, which is not always true. In the general case, the circuit returns an estimation of θ which allows us to recover it through a continued fraction argument with good probability.

Shor as QPE

Implementing Shor's algorithm, to find the order r of a modulo N, requires the following setting:

🐑 📰 Telsy

$$|0\rangle^{\otimes n=2\lceil \log_2 N\rceil} = H^{\otimes n} = QFT_n^{\dagger}$$

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\psi_s\rangle_m = |1\rangle_{m=\lceil \log_2 N\rceil} = U^{\times}$$

where

$$\mathbf{U}: \left| y \right\rangle_m \longmapsto \left| ay \mod N \right\rangle_m$$

and

$$\left|\psi_{s}\right\rangle_{m} = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi i s k}{r}} \left|a^{k} \mod N\right\rangle_{m} \text{ s.t. } \mathbf{U}\left|\psi_{s}\right\rangle_{m} = e^{\frac{2\pi i s}{r}} \left|\psi_{s}\right\rangle_{m}.$$

To avoid any inconvenience in producing $\left|\psi_{s}\right\rangle_{m}$ for some s, we observe

$$\left|1\right\rangle_{m} = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} \left|\psi_{s}\right\rangle_{m}.$$

🔬 📰 Telsy

Therefore, using $|1\rangle$ which is a uniform superposition of those eigenstates and reasoning by linearity, the final measure gives

$$\frac{2^n s}{r}$$
,

for s a random integer between 0 and r - 1.

4- Breaking RSA

Given N = pq, Alice wants to send a message $b \in \mathbb{Z}/N\mathbb{Z}^*$ to Bob. Bob's public key is $c \in \mathbb{Z}/(p-1)(q-1)\mathbb{Z}^*$, then Alice sends him

$$a \equiv b^c \mod pq.$$

Assume Eve can detect the order r of a, gcd(r, c) = 1 implies that r is also the order of b. Moreover, there exists d such that $cd \equiv 1 \mod r$.

$$a^d \equiv b^{cd} \equiv b^{1+mr} \equiv b \mod pq.$$

It can be proved that there's a good probability that the detected period r is even. If so, we have

🔬 🃰 Telsy

$$a^r \equiv 1 \mod pq$$
 $a^{\frac{r}{2}} \not\equiv 1 \mod pq$.

Assume also that

$$a^{\frac{r}{2}} \not\equiv -1 \mod pq,$$

since

$$(a^{rac{r}{2}}-1)(a^{rac{r}{2}}+1)\equiv 0 \mod pq$$

we conclude

$$\{p,q\} = \{\gcd(a^{rac{r}{2}}-1,N), \gcd(a^{rac{r}{2}}+1,N)\}.$$

- Shor P. W., *Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*, SIAM J. Comp., **26**, 1484-1509, 1997.
- Beauregard S., Circuit for Shor's algorithm using 2n+3 qubits, Quantum Information and Computation, Vol. 3, No. 2, 175-185, 2003.
- Mermin D., *Quantum Computer Science: An Introduction.*, Cambridge: Cambridge University Press, 2007.
- Nielsen M., Chuang I., Quantum Computation and Quantum Information: 10th Anniversary Edition., Cambridge: Cambridge University Press, 2010.

francesco.stocco@telsy.it